Inference in Multilayer Networks via Large Deviation Bounds
نویسندگان
چکیده
VIa We study probabilistic inference in large, layered Bayesian networks represented as directed acyclic graphs. We show that the intractability of exact inference in such networks does not preclude their effective use. We give algorithms for approximate probabilistic inference that exploit averaging phenomena occurring at nodes with large numbers of parents . We show that these algorithms compute rigorous lower and upper bounds on marginal probabilities of interest, prove that these bounds become exact in the limit of large networks, and provide rates of convergence.
منابع مشابه
Large Deviation Methods for Approximate Probabilistic Inference
We study two-layer belief networks of binary random variables in which the conditional probabilities Pr[childjparents] depend monotonically on weighted sums of the parents. In large networks where exact probabilistic inference is intractable, we show how to compute upper and lower bounds on many probabilities of interest. In particular, using methods from large deviation theory, we derive rigor...
متن کاملOn the Concentration of Expectation and Approximate Inference in Layered Networks
We present an analysis of concentration-of-expectation phenomena in layered Bayesian networks that use generalized linear models as the local conditional probabilities. This framework encompasses a wide variety of probability distributions, including both discrete and continuous random variables. We utilize ideas from large deviation analysis and the delta method to devise and evaluate a class ...
متن کاملRelating modularity maximization and stochastic block models in multilayer networks
Characterizing large-scale organization in networks, including multilayer networks, is one of the most prominent topics in network science and is important for many applications. One type of mesoscale feature is community structure, in which sets of nodes are densely connected internally but sparsely connected to other dense sets of nodes. Two of the most popular approaches for community detect...
متن کاملPrediction of the pharmaceutical solubility in water and organic solvents via different soft computing models
Solubility data of solid in aqueous and different organic solvents are very important physicochemical properties considered in the design of the industrial processes and the theoretical studies. In this study, experimental solubility data of 666 pharmaceutical compounds in water and 712 pharmaceutical compounds in organic solvents were collected from different sources. Three different artificia...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کامل